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A B S T R A C T

Wildfires have become a recurrent threat for many Mediterranean forest ecosystems. The characteristics of the
Mediterranean climate, with its warm and dry summers and mild and wet winters, make this a region prone to
wildfire occurrence as well as to post-fire soil erosion. This threat is expected to be aggravated in the future due
to climate change and land management practices and planning.

The wide recognition of wildfires as a driver for runoff and erosion in burnt forest areas has created a strong
demand for model-based tools for predicting the post-fire hydrological and erosion response and, in particular,
for predicting the effectiveness of post-fire management operations to mitigate these responses.

In this study, the effectiveness of two post-fire treatments (hydromulch and natural pine needle mulch) in
reducing post-fire runoff and soil erosion was evaluated against control conditions (i.e. untreated conditions), at
different spatial scales.

The main objective of this study was to use field data to evaluate the ability of different erosion models: (i)
empirical (RUSLE), (ii) semi-empirical (MMF), and (iii) physically-based (PESERA), to predict the hydrological
and erosive response as well as the effectiveness of different mulching techniques in fire-affected areas.

The results of this study showed that all three models were reasonably able to reproduce the hydrological and
erosive processes occurring in burned forest areas. In addition, it was demonstrated that the models can be
calibrated at a small spatial scale (0.5 m2) but provide accurate results at greater spatial scales (10m2).

From this work, the RUSLE model seems to be ideal for fast and simple applications (i.e. prioritization of
areas-at-risk) mainly due to its simplicity and reduced data requirements. On the other hand, the more complex
MMF and PESERA models would be valuable as a base of a possible tool for assessing the risk of water con-
tamination in fire-affected water bodies and for testing different land management scenarios.

1. Introduction

Wildfires have become a persistent threat in the Mediterranean,
especially in the Iberian Peninsula where, on average, more than
100,000 ha y−1 land burned in the past decade (San-Miguel-Ayanz
et al., 2017). Fire activity is foreseen to increase in Mediterranean
countries throughout the 21st century, as a result of shifts in climate
and socio-economic conditions (Nunes et al., 2017; Turco et al., 2014,
2016; Viedma et al., 2015).

From the commonly reported environmental disturbances asso-
ciated to wildfires, soil erosion by water is probably the one raising
most concern (Esteves et al., 2012; Moody et al., 2013; Santín and

Doerr, 2016; Shakesby, 2011; Shakesby et al., 2016). By reducing or
eliminating the vegetation and ground cover, wildfires make the soil
more susceptible to raindrop impact, reducing aggregate stability and
promoting sediment detachment (e.g. Certini, 2005; Prats et al., 2014;
Shakesby and Doerr, 2006). Fire-induced soil water repellency, often
reported following wildfires (Keizer et al., 2008; Shakesby, 2011), can
also contribute to an enhancement in runoff and soil erosion in burned
forest areas (Fernández et al., 2010; Vieira et al., 2016). Fire-induced
changes on forest hydrology and geomorphology are likely to nega-
tively affect forest ecosystem services, including raw material and water
provisioning, erosion and flood control, and biodiversity maintenance
(Carvalho-Santos et al., 2016; Nunes et al., 2017; Smith et al., 2011;
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Verkaik et al., 2013).
Mitigation measures can be applied to help reduce the on-site and

off-site negative effects of post-fire water erosion (Robichaud et al.,
2010). Mulch treatments (e.g. straw mulch, chopped-bark mulch, pine
needle mulch and hydromulch) are considered the most effective in
minimizing post-fire soil erosion (Férnandez and Vega, 2016; Neary
et al., 2005; Prats et al., 2014, 2016; Robichaud et al., 2013). This is
mainly because mulch provides surface cover to soils prior to vegeta-
tion regrowth, thereby minimizing rain splash detachment while im-
proving soil stabilization (Robichaud et al., 2007; Wohlgemuth et al.,
2009).

As the hydrological and erosive response of burned areas is ex-
tremely complex, depending on an interplay of factors such as, vege-
tation, fire severity, climate, geology, soil type, topography, and land
management (Certini, 2005; Shakesby and Doerr, 2006), post-fire
treatments must be adapted to local conditions (Shakesby, 2011).
Models are valuable tools for guiding management decisions mitigating
post-fire soil erosion and for planning the rehabilitation of burned areas
(Fernández et al., 2010; Fernández and Vega, 2016; Hyde et al., 2012;
Robichaud and Ashmun, 2012), as they have been reported to accu-
rately predict post-fire runoff and sediment yields in a multiplicity of
forest catchments. However, in order to be realistic and accurate,
models should be parameterized using field data to reduce uncertainties
(Férnandez et al., 2010, Fernández and Vega, 2016; Larsen and
MacDonald, 2007; Rulli et al., 2013; Shakesby, 2011).

Most of the models that have been used to simulate post-fire con-
ditions were originally developed for unburned conditions. The adap-
tation of these models to burned conditions was typically achieved by
introducing an empirical “fire factor” or by adjusting input parameters
such as ground cover, surface roughness, soil hydraulic properties
(Chen et al., 2013).

The existing post-fire erosion modelling studies include applications
and adaptations of simple empirical models, such as the Universal Soil
Loss Equation (USLE, Wischmeier and Smith, 1978) and its revised
version, the RUSLE model (Renard et al., 1997), but also semi-empirical
models, such as the revised Morgan–Morgan–Finney model (MMF,
Morgan, 2001), and physically-based models, the Water Erosion Pre-
diction Project (WEPP,), the Pan-European Soil Erosion Risk Assess-
ment (PESERA, Kirkby et al., 2003) and the Soil and Water Assessment
Tool – SWAT model (Arnold et al., 1998).

In the Mediterranean region, post-fire erosion predictions were
performed using the RUSLE (Fernández et al., 2010, 2016; Karamesouti
et al., 2016; Rulli et al., 2013; Terranova et al., 2009); MMF (Fernández
et al., 2010; Vieira et al., 2014), WEPP (Soto and Díaz-Fierros, 1998),
PESERA (Esteves et al., 2012; Fernández et al., 2016; Karamesouti
et al., 2016) and SWAT models (Nunes et al., 2017). These model ap-
plications however, often yield different erosion rates (Fernández et al.,
2010, Fernández and Vega, 2016; Karamesouti et al., 2016) and only
few from these studies present results validation with field data
(Fernández et al., 2010, Fernández and Vega, 2016; Nunes et al., 2017;
Soto and Díaz-Fierros, 1998; Vieira et al., 2014).

As regards to post-fire rehabilitation, in general, there is a lack of
model applications to simulate post-fire runoff and erosion in mitigated
areas (Fernández et al., 2010; Robichaud et al., 2007). In the USA, the
ERMiT tool has been widely used as an operational tool for decision
support in post-fire land management (Robichaud et al., 2007). In the
Mediterranean region, the RUSLE (Fernández et al., 2010; Rulli et al.,
2013) and MMF models (Fernández et al., 2010; Vieira et al., 2014)
have been applied and both models showed their ability to be used as
operational tools to help land managers prioritize treatment areas and
therefore, to optimize the limited resources that are typically available
for post-fire land management.

The main objective of this study was to compare the ability of an
empirical (RUSLE), semi-empirical (MMF) and physically-based
(PESERA) model to predict the hydrological and erosive response and
the effectiveness of different mulching techniques, namely hydro-

mulching and natural mulching with pine needle, following a moderate
severity wildfire in North-Central Portugal (Colmeal, Coimbra district).
The ultimate goal of this work is to identify the best model to be used as
base for a post-fire management tool, which aims for planning erosion
mitigation and rehabilitation measures for this region, so that land
managers can prioritize resources and evaluate trade-offs between dif-
ferent management strategies.

2. Materials and methods

2.1. Study area and study sites

On August 27, 2008, a wildfire ravaged and consumed almost 68 ha
of forest lands, located near the Colmeal village, in the municipality of
Góis, north-central Portugal (40°08′42″ N, 7°59′16″ W; 490m a.s.l.).
Prior to the fire, the Colmeal study area was predominantly dominated
by maritime pine (Pinus pinaster Ait.) stands but also included some
eucalypt (Eucalyptus globulus Labill.) stands (Vieira et al., 2016).

The climate of the study area can be characterized as humid meso-
thermal (Köppen, Csb), with prolonged dry and warm summers. Mean
annual temperature and precipitation at the nearest meteorological
station (GÓIS (13I/01 G); 10 km) are, respectively12 °C and 1133mm
(SNIRH, 2012).

The study area lies over pre-Ordovician schists and greywackes
(Ferreira, 1978; Pimentel, 1994), which have given rise to shallow soils
typically mapped as Humic Cambisols (Cardoso et al., 1971, 1973).

Within the burned area, 2 pine-dominated hillslopes were selected
for testing two post-fire treatments, i.e. hydromulch and natural pine-
needle mulch (Fig. 1). This study site had already been previously se-
lected for several other studies concerning post-fire vegetation recovery
(Maia et al., 2012a, 2012b), modelling post-fire hydrological response
at catchment scale (van Eck et al., 2016), the effectiveness of hydro-
mulch to reduce runoff and erosion after the wildfire (Prats et al.,
2016), and also the effect of pre-fire plowing in the post-fire response
(Vieira et al., 2016).

According to simple field indicators (i.e. tree canopy and woody
debris consumption, litter combustion, ash colour and mineral soil), the
two hillslopes appeared to have experienced a low-to-moderate burn
severity since tree canopies and most of the logs were only partially
consumed, the litter layer was fully consumed, the ash was black and
the mineral soil was unaffected (DeBano et al., 1998; Hungerford,
1996). The ‘Twig Diameter Index’ (TDI), calculated based on the dia-
meter of the 3 thinnest remaining twigs of each measured shrub (10 per
site), also confirmed the existence of a moderate severity fire since an
intermediate value (0.5) was found for an index that typically varies
from 0 (unburned) to 1 (severely burned) (Maia et al., 2012a, 2012b;
Vieira et al., 2016).

2.2. Model description and parameterization

The RUSLE, the revised MMF and the PESERA models, were applied
to predict the hydrological and erosive response, and the effectiveness
of different mulching techniques in reducing post-fire runoff and ero-
sion at the Colmeal study area. A brief description of the three models is
given below.

2.2.1. RUSLE
RUSLE (Renard et al., 1997) is an erosion model designed to predict

long-term annual average soil losses induced by runoff, at slope scale.
According to Wischmeier and Smith (1978), soil losses (A, Mg ha−1

y−1) can be calculated as a product of five factors (Eq. (1)): rainfall
erosivity (R, MJmmh−1 ha-1 y−1), soil erodibility (K, Mg hMJ−1

mm−1), topography (LS, non-dimensional), crop (C, non-dimensional)
and soil conservation practices (P, non-dimensional).

= × × × ×A R K LS C P (1)

D.C.S. Vieira et al. Environmental Research 165 (2018) 365–378

366



In the present work, the R factor was calculated by three different
methods:

1. by summing the rainfall erosivity of all the events separated by 6 or
more hours with no rainfall and with rainfall amounts greater than
50mm. For each event, the kinetic energy was calculated according
to the formula of Coutinho and Tomás (1995), which is considered
the most suitable for the western part of the Mediterranean basin
and then multiplied by the maximum rainfall intensity per 30min of
that specific event;

2. by multiplying annual rainfall by a factor of 0.865, as proposed by
Roose (1977) and Morgan (1995) for tropical areas and suggested by
Fernández et al. (2010) for NW Spain;

3. based on the available rainfall erosivity maps for Europe (Panagos
et al., 2015).

In the end, the chosen rainfall erosivity method for the present study
was the one from Panagos et al. (2015), as it led to the best model
calibration (see Section 3.2.1).

Soil erodibility, K, was calculated according to Wischmeier and
Smith (1978) since the percentage of organic matter was higher than
4% (Renard et al., 1997).

The topographic factor was calculated based on the formulation of
Renard et al. (1997), taking into account plot characteristics.

The C factor was calculated in two different ways:

1. according to the Renard et al. (1997) formulation (Eq. (2))

= × × × ×C PLU CC SC SR SM (2)

Where PLU corresponds to the previous land use, CC to the canopy
cover, SC to the surface cover, SR to surface roughness and SM to
soil moisture content (Renard et al., 1997). For the calculation of the

C factor, the authors have taken into account the post-fire changes
made by Fernández et al. (2010) and Vieira et al. (2014) for pre-
dicting annual soil losses with RUSLE. In this study, however, the
mean volumetric water content in soil (m³/m³) was used since the
SM factor has never been calibrated for burned forest soils
(González-Bonorino and Osterkamp, 2004).

2. Based on the reference table from Borrelli et al. (2016), which
presents several disturbed C values according to the type of dis-
turbance (wildfire or logging) and time since the disturbance.

In the end, the chosen C factor for the present study with the RUSLE
model was the one from Borrelli et al. (2016), as it led to the best model
calibration (see Section 3.2.1).

The P factor was calculated according to Eq. (3) following the ap-
proach of previous modelling studies in the Iberian Peninsula
(Fernández et al., 2010; Vieira et al., 2014):

=P 1–(GC/100) (3)

Where GC corresponds to the ground cover measured under field con-
ditions.

The parameter values used for the RUSLE model are listed in
Table 2.

2.2.2. MMF
The MMF model (Morgan et al., 1984) and its revised version

(Morgan, 2001), were developed to predict annual soil losses at slope
scale. While retaining the simplicity of the Universal Soil Loss Equation
(Wischmeier and Smith, 1978), this model also incorporates the more
recent knowledge on erosion processes. The model differentiates soil
erosion into a water and a sediment phase. The sediment phase con-
siders soil erosion to result from the detachment of soil particles by
raindrop impact and runoff, whereas the water phase reflects the

Fig. 1. Experimental design and study sites; a) “natural” needle cast at the pine stand; b) slope view of burned untreated and treated SF plots (SF-B, SF-Hm); c) detail
of the burned untreated and treated M plots (M-B, M-Hm); d) detail of M plots with needle cast (M-Nm); e) location of study sites.
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transport of soil particles by overland flow.
The model was implemented as defined by Morgan (2001) and

considering the post-fire adaptations described by Fernández et al.
(2010) and Vieira et al. (2014). For consistency reasons (i.e. compar-
ison with the other models), the revised MMF was applied at annual
scale only although it has been reported that the model performs better
for post-fire conditions at seasonal scale (Vieira et al., 2014).

The revised MMF model (hereafter called MMF) requires 16 input
parameters. For the present work, most of these parameters were esti-
mated from field measurements but 3 had to be estimated from lit-
erature data (Table 3).

Model parameters can be divided into four categories:
Rainfall – which includes the following parameters: annual rainfall

(R, mm yr−1), mean rainfall per raining day (Rn, mm day−1) and
rainfall intensity (I, mm h−1). Rainfall data (R and Rn) recorded in the
study sites was used to calculate rainfall kinetic energy following the
procedure outlined by Coutinho and Tomás (1995), which considers
30mmh−1 as the most suitable rainfall intensity predictor for the
Mediterranean climate (Morgan, 2001).

Soil – including the parameters: bulk density (BD, g cm−3), effective
hydrological depth of soil (EHD, m), soil detachability index (K, g J−1),
and cohesion of the surface soil (COH, kPa). All these parameters were
estimated from field data (Prats et al., 2016; Vieira et al., 2016). Ef-
fective hydrological depth of soil (EHD, m) was estimated as a linear
function of ground cover (GC, %) (Vieira et al., 2014), such that for a
ground cover of 0% the effective hydrological depth of soil value cor-
responded to that of shallow soils on steep slopes (EHD = 0.05m;
Morgan, 2001) and for a ground cover of 100% the effective hydro-
logical depth of soil value corresponded to that of a mature forest (EHD
= 0.20m; Morgan, 2001). Soil detachability index (K, g J−1)and co-
hesion of the surface soil (COH, kPa) were estimated from soil texture
analysis of samples collected by Prats et al. (2016) and Vieira et al.
(2015).

Landform – includes only one parameter: slope steepness (S, °),
which was determined in the field.

Land cover – including the parameters: interception (A), ratio of
actual (Et, mm) to potential (E0, mm) evapotranspiration, crop cover
management factor (C), which combines C and P factors from the
Universal Soil Loss Equation (Eq. (2), Eq. (3)), canopy cover (CC, %),
ground cover (GC, %), plant height (PH, m). The parameters intercep-
tion (A), canopy cover (CC, %) and plant height (PH, m), were all zero
considering that the study site was a burned area. Actual evapo-
transpiration (Et, mm) and potential evapotranspiration (E0, mm) was
an output of the Soil and Water Assessment Tool model (Arnold et al.,
1998) that was applied to calculate the water balance for Colmeal
catchment in the 4 years after fire. In SWAT, the effective evapo-
transpiration (Et, mm) was calculated as the sum of the evaporation of
plant canopy and the maximum soil evaporation and transpiration
(Ritchie, 1972). The potential evapotranspiration (E0, mm) was cal-
culated following the Hargreaves and Samani (1985) method. The C

and P factors were estimated as described for the RUSLE model (Renard
et al., 1997), as it led to the best model calibration (see Section 3.2.1).

Runoff estimations (Q) were scaled according to Morgan and Duzant
(2008) equation (Eq. (4)):

⎜ ⎟⎜ ⎟= ⎛
⎝

− ⎞
⎠

× ⎛
⎝

⎞
⎠

Q exp R
R

L
L

c prediction

calibration0

0 1.

(4)

Where R0 is the mean rainfall per rainy day (mm), Rc the soil moisture
at storage capacity, Lprediction the slope length to be predicted and
Lcalibration the slope length of the calibration plots.

The left-hand term of this equation corresponds to the original
Morgan (2001) equation, whereas the right-hand term is an empirical
adjustment for slope length, considering the scale at which the para-
meters were calibrated.

2.2.3. PESERA
PESERA is a physically based erosion model constructed around the

conceptual separation of precipitation into overland flow generation
and infiltration, with runoff depending primarily on soil and vegetation
properties. In this model, sediment transport is estimated from runoff
totals and their transport capacity in each storm. Therefore, soil erosion
reflects mainly sheet and rill erosion processes (Kirkby et al., 2008).
The PESERA model was implemented with the Visual Basic one-cell
version (Kirkby et al., 2003).

The calibrated model parameters (Table 4) can be grouped into 5
classes:

Soil properties – includes the parameters: erodibility class, crusting
class, soil storage, and scale depth. The erodibility class, crusting class,
and soil storage were defined according to the texture class (Medium
Fine) as described in the Kirkby et al. (2003) manual. Scale depth was
set as 10mm, as described in by Kirkby et al. (2008) for organic soils.

Transport law exponents – includes the parameters: distance and
gradient. The distance parameter was calibrated from the hydrological
and erosive response of the micro-plots.

Runoff – includes only one parameter: runoff threshold (%). This
parameter was estimated for each treatment (M-B, M-Hm, M-Nm) using
the runoff data collected at micro plot scale.

Land cover – correspond to the average ground cover (%) measured
monthly in each experimental plot.

Climate – includes the monthly rainfall (mm), average rainfall per
rainy day (mm) and corresponding standard deviation (mm), average
temperature (°C) and average daily amplitude (°C), and monthly po-
tential evapotranspiration (mm) (Table 4). Rainfall and temperature
data was measured it the study area. Potential evapotranspiration was
determined according to the Hargreaves and Samani (1985) method, as
described for the MMF model (see section 2.3.2).

2.3. Data collection and modelling approach

Runoff and erosion data from plots submitted to three different

Table 1
General description of the dataset used for modelling: phase (calibration/validation), treatment (control burned, burned treated with hydromulch, burned treated
with natural needle mulch), hillslope number (1 and 2) number of replicates, plot area, and type of data (runoff and/or erosion).

Modelling phase Treatment Hillslope nr. Nr. plots plot area (m2) runoff erosion

Calibration M - B 1 4 0.28-0.64 Yes Yes
(burned)
M - Hm 4 Yes Yes

(burned + hydromulch)
M - Nm 2 4 0.28-0.64 Yes Yes

(burned + needle mulch)
Validation SF - B 1 3 9-10 No Yes

(burned)
SF - Hm 3 No Yes

(burned + hydromulch)
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treatments: burned untreated (B), burned with natural needle cover
(Nm), and burned with hydromulch (Hm) (Table 1), were used for
modelling. Most of the experimental plots were installed immediately
after the wildfire (September 2008), however, only data from the first
year following hydromulch application (March 2009 to March 2010)
was selected for this study to ensure comparability between plots.

For each treatment (Tables 1), 4 micro-plots were randomly in-
stalled at the base of the hillslopes. The outlets of the micro-plots were
connected, using garden hose, to 30 or 70 L polyethylene tanks to col-
lect runoff on a weekly to bi-weekly basis. Whenever the runoff in a
tank exceeded 250mL, the runoff volume was measured and a sample
was collected in a 1.5 L plastic bottle to determine sediment con-
centration.

Additionally, in a greater scale (Tables 1), 3 sediment-fence plots for
each B and Hm treatments were also installed, at the middle of the
hillslope. The geotextile fabric of the sediment fences filtered the runoff
and the sediments accumulated at the bottom of the plots were col-
lected at monthly intervals.

Each field trip also involved the measurement of rainfall through
the recordings of 5 tipping-bucket rainfall gauges (Pronamic
Professional Rain Gauge with 0.2mm resolution linked to an ONSET
Hobo Event Logger Automatic) (Fig. 1).

Once a month, ground cover (GC, %) was described over a square
grid of 50×50 cm laid out over the micro-plots, and of a 100× 100 cm
grid in the case of the sediment fence plots, by recording the cover
category (i.e. stones, bare soil, ash/charred material, litter and vege-
tation) at each grid intersection.

Volumetric soil moisture content was monitored at a depth of
0–5 cm at eight locations: four within the untreated plots and four
within the hydromulch plots, using eight EC-5 sensors linked to two
Em5b data loggers (Decagon Devices, Inc.) and recording data at
10min intervals.

Model calibration was carried out using runoff and erosion data
collected at micro plot scale (M; plot area: 0.28–0.64m2), whereas
model validation was restricted to erosion data from sediment-fence
plots (SF; plot area: 9–10m2). This calibration was focused on key
parameters (Tables 2–4), so that runoff and erosion predictions would
reflect local conditions and distinguish between the different treatments
(untreated, treated with hydromulch and treated with needle mulch).

Upscaling with the RUSLE and PESERA models was achieved by the
topographic inputs parameters included in the models, while for the
revised MMF this was done according to the Modified Morgan–Duzant
version of the model (Morgan and Duzant, 2008).

2.4. Model performance evaluation

Model performance was evaluated using four commonly used sta-
tistical indicators (Moriasi et al., 2007):

• Nash-Sutcliffe efficiency (NSE) – NSE determines the relative mag-
nitude of the residual variance compared to the measured variance.
NSE values greater than 0.5 indicate satisfactory model perfor-
mance, whereas values below this threshold are indicative of un-
satisfactory model performance (Moriasi et al., 2007).

• Coefficient of determination (R2) – R2 describes the proportion of
data variance explained by the model. R2 ranges from 0 to 1, with
values higher than 0.5 indicating reasonable model performance
(Santhi et al., 2001; Van Liew et al., 2003).

• Root mean square error (RMSE) - RMSE is an error index. According
to Singh et al. (2004), RMSE values less than half the standard de-
viation of the measured data are considered low and inappropriate
for model evaluation. RMSE values of 0 indicate a perfect fit.

• Percent bias (PBIAS) – PBIAS indicates the magnitude of model er-
rors compared to measurements. Positive PBIAS values indicate
model underestimation and negative values model overestimation
(Gupta et al., 1999). PBIAS values below 25% for runoff and below
55% for soil erosion are considered reasonable (Moriasi et al.,
2007).

Aside from these indicators, a Spearman's rank correlation test (rho)
between measured and predicted values was also performed, to eval-
uate if the reduction in sample size from the calibration (n=12) to the
validation phase (n=6) influenced model performance.

3. Results

3.1. Post-fire hydrological and erosive response in the calibration and
validation plots

The burned plots produced an overall runoff amount of 603mm
(Fig. 2), which is roughly half of the rainfall amount (runoff coefficient
(rc)= 44%). The effect of the needle cast resulted in a reduction in
runoff, with the concurrent needle plots producing 46% less runoff than
the burned plots. The hydromulch resulted in a strong runoff reduction
of 76%, as compared to the burned plots.

Soil losses on the burned micro-plots were 3.7 Mg ha−1, and the
reduction effect of both needles and hydromulch reached 89% and 86%
less erosion, as compared to the burned plots. In the case of the vali-
dation plots, the burned ones soil losses reached the 5.3Mg ha−1, and
the hydromulched accounted for 1.2 Mg ha−1, or 78% less.

During the entire monitoring year, the mean soil losses from the
validation plots (for both treated, and untreated), show greater
amounts when compared to the calibration ones. However, the in-
creased standard deviation in the validation plots (Fig. 2) do not allow
verifying significant differences between these two scales (Prats et al.,
2016).

Table 2
RUSLE model parameters.

Calibration Validation Methodology for parameter estimation

Factor Parameter M-B M-B M-Hm M-Hm M-Nm M-Nm SF-B SF-B SF-Hm SF-Hm

Rainfall erosivitya R (MJmm h-1
ha-1 y-1)

1064.86 Estimated according to Panagos et al. (2015).

Soil erodibility K (Mg ha-1 MJ-
1mm-1)

0.017 Calculated according to Renard et al. (1997)

Topographic factor LS 1.18 1.49 0.81 1.81 0.85 1.85 2.49 3.26 2.62 3.26 Calculated according to Renard et al. (1997)
Crop factora C 0.13 Estimated according to Borrelli et al. (2016) which

assigned a C-factor of 0.13 to a forest area during the
2nd year after the wildfire.

Soil conservation
practices

P .8 1 0.3 0.5 0.3 0.4 0.7 0.8 0.3 0.4 Calculated from field ground cover measurements
using the equation P= 1 – (GC/100).

a Calibrated parameters.
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3.2. Runoff and erosion predictions

3.2.1. Calibrated parameters
The final model calibration was delineated after selecting the

combination of methodologies to calculate the R and the C factor for
RUSLE and the C factor for the MMF (Table 5) that best fit the measured
soil losses, according to the Nash-Sutcliffe and the R2 model perfor-
mance indicators.

The calibration results show that the R factor calculated with the
Renard et al. (1997) methodology, whereas the rainfall erosivity of each
event was calculated based on the Coutinho and Tomás (1995) rainfall
kinetic energy clearly worsened the estimation results. In the other
hand, the methodology proposed by Fernández et al. (2010), using
Roose (1977) and Morgan (1995) multiplication factor together with
the Panagos et al. (2015) approximate the soil losses estimations to the
measured ones (Table 5).

In the case of the C factor, when using the RUSLE model, the esti-
mations offered by Borrelli et al. (2016) presented a better fit when
compared with the method defined by Renard et al. (1997) (Table 5).

However, when the C factor is applied in the MMF model, the best
model fit is achieved with the Renard et al. (1997) methodology, that
valued other soil parameters such as soil moisture, ground cover, sur-
face roughness, besides the wildfire impact aspect through time as
suggested by Borrelli et al. (2016) (Table 5).

3.2.2. RUSLE model
Overall, the RUSLE calibration was considered successful as NSE

and R2 values were above 0.5 (Table 6, Fig. 3b). Some underestimation
of annual sediment losses was, however, found for untreated (M-B)
micro-plots (pred. 2.8 vs. meas. 3.7 Mg ha−1), whereas for treated
micro-plots the model tended to overestimate sediment losses (M-Hm:
pred. 1.2 vs. meas. 0.5 Mg ha−1, for; M-Nm: pred. 1.1 vs. meas. 0.4
Mg ha−1) (Table 6).

Model efficiency improved in the validation phase (NSE = 0.70; R2

= 0.89; Table 6). Nevertheless, some there was still some over-
estimation (Fig. 2b) of sediment losses (PBIAS = −20.1%, RMSE =
1.6Mg ha−1), especially at the hydromulch (SF- Hm) plots (pred. 2.3
vs. meas. 1.0 Mg ha−1).

3.2.3. MMF model
In general, the MMF model was able to effectively predict the hy-

drological response of the different micro-plots, as shown by the sta-
tistical indicators (NSE = 0.69; R2 = 0.79; PBIAS = −0.7%) (Table 6,
Fig. 3a). An underestimation of runoff amounts (Fig. 2a) was, however,
found for the M-B plots (pred. 527 vs. meas. 611mm), unlike for the M-
Nm (pred. 304 vs. meas. 326mm) and M-Hm plots (pred. 247 vs. meas.
145mm). As regards to erosion predictions (Fig. 2b), the model was
clearly able to differentiate between untreated (M-B) and treated micro-
plots (M-Hm and M-Nm). On overall, model performance was con-
sidered very good since NSE and R2 values were close to 1 (Table 6).
Nevertheless, a slight underestimation of sediment losses was verified
during model calibration (PBIAS = 5.2%, RMSE = 0.3Mg ha−1).

Lower model accuracy was, however, found for the validation plots
(NSE = 0.77; R2 = 0.79; Table 6), but the MMF performance was still
good. The model did, however slightly overestimated sediment losses in
the untreated plots (pred. 6.1 vs. meas. 5.35Mg ha−1) and highly un-
derestimated them in the ones treated with hydromulch (pred. 0.1 vs.
meas. 1.0 Mg ha−1).

3.2.4. PESERA model
The calibration of PESERA was considered successful for both runoff

and erosion (NSE and R2>0.73; Table 6, Fig. 3a). Nevertheless, some
overestimation of runoff (M-Nm: pred. 400 vs. meas. 326; M-Hm: pred.
247 vs. meas. 145Mg ha−1) and underestimation of erosion (M-Nm:
pred. 0.38 vs. meas. 0.41; M-Hm: pred. 0.02 vs. meas. 0.47Mg ha−1)
amounts was consistently found for the treated plots (Fig. 2). The plotsTa
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Table 4
PESERA model parameters.

Calibration Validation Methodology for parameter estimation

Factor Parameter M-B M-B M-Hm M-Hm M-Nm M-Nm SF-B SF-B SF-Hm SF-Hm

Soil properties Erodibility Class 10 Estimated based on the soil texture class, as described
by Kirkby et al. (2003)Crusting Class 10

Soil Storage 10
Scale depth (mm) 10 Estimated from Kirkby et al. (2008)

Transport law
exponents

Distance 5 Estimated according to the micro-plots hydrological
and erosive response.

Gradient 0.5 1 Estimated according to the scale effect
Runoff Runoff thresholda 7 3 5 7 3 Estimated according to the micro-plots hydrological

and erosive response.
Land Cover Cover (%)

(monthly values)
3 27 70 95 53 77 10 37 59 73 Measured from field measurements (Prats et al., 2016;

Vieira, 2015).
Climate Month Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Recorded at the study sites (Prats

et al., 2016; Vieira et al., 2016),
and nearest meteorological
station (GÓIS (13I/01 G).

Sum Rainfall
(mm)

97.40 61.60 36.20 41.00 3.80 41.60 111.60 143.20 240.40 262.60 181.80 213.80

Av Rain/rain-day
(mm)

11.99 5.13 5.90 18.36 6.44 1.90 1.49 1.71 7.48 3.86 6.13 12.43

SD Rain/rain-day
(mm)

14.17 8.40 8.30 18.35 7.91 4.85 2.32 3.49 15.94 8.05 9.78 15.13

Average
Temperature (°C)

10.86 12.65 10.21 13.61 13.49 18.35 18.78 18.74 17.79 14.59 9.43 8.16

Average
Temperature
amplitude (°C)

6.49 7.39 7.86 8.05 6.81 10.33 9.86 10.09 9.40 9.11 8.18 7.51

Sum of PET –
Hargreaves (mm)

31.19 49.27 60.98 88.20 87.76 163.87 154.93 144.88 102.32 69.86 37.93 20.49

a Calibrated parameters.

Fig. 2. Measured and predicted post-fire annual runoff and sediment losses in the different experimental plots and with the different models: RUSLE, MMF and
PESERA. Maximum and minimum values are given by the error bars.
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with major differences between measured and predicted values being
the hydromulch plots, especially in what concerns to erosion.

The difficulty of the PESERA model in simulating erosion was also
noticeable at the higher spatial scale (i.e. validation plots) (Fig. 3c),
nonetheless, model performance was considered reasonable (Table 6).

3.3. Comparison of model performance

The best model for predicting annual runoff at the micro plot scale
was the MMF, as it reached the highest NSE and R2 values (respectively,
0.69 and 0.89) and lowest PBIAS values (−0.7%). The PESERA per-
formance was also good, with the statistical indicators presenting
slightly lower values (Table 6).

The best erosion predictions were also achieved with the MMF
(Table 6), but the model slightly underestimated sediment losses
(PBIAS= 5.2%). The second best model in predicting soil erosion was
PESERA (NSE = 0.85; R2 = 0.88; PBIAS = −3.5%), followed by the
RUSLE model (NSE = 0.63; R2 = 0.75; PBIAS = −11.7%). Similar
results were observed at plot scale, as the MMF performed better in
predicting erosion than the other models (NSE = 0.77; R2 = 0.79;
PBIAS = 1.9%; Table 6). Reasonable predictions were also obtained
with the other two models (Table 6), the PESERA (NSE = 0.73; R2 =
0.77; PBIAS = 2.6%) performing slightly better than RUSLE (NSE =
0.70; R2 = 0.89; PBIAS = −20.1%), as observed at micro plot scale.
According to the results of the Spearman correlations (rho) sample size
did not influence model performance, since high correlation values
(rho> 0.62) were found between the statistical indicators of all models
(Table 6).

Overall, the ability of the RUSLE, MMF and PESERA models to
predict the annual runoff and sediment losses in untreated and treated
plots was considered satisfactory, for both the calibration and valida-
tion phase (Table 6). Erosion predictions were better than runoff pre-
dictions for all models (Table 6).

4. Discussion

4.1. Model evaluation and comparison with other studies

Table 7 compiles the model accuracy for runoff and erosion pre-
dictions between other modelling exercises in burned areas, with the
purpose of comparing them with the present work. From the reviewed
modelling studies that predict post-fire soil losses at plot scale, few were
found to evaluate modelling predictions with field data (Fernández
et al., 2010; Fernández and Vega, 2016; Larsen and MacDonald, 2007;
Vieira et al., 2014), and fewer studies did a calibration-validation ex-
ercise with an independent dataset (Vieira et al., 2014). Was also ver-
ified that model evaluation with runoff data was scarce in post-fire
studies, justified by the operational difficulties in monitoring post-fire
hydrological response.

The model efficiencies obtained in this study with the RUSLE model
are in good agreement with the predictions of Fernández et al. (2010)
for post-fire soil losses, with and without rehabilitation measures at
500m2 scale (Table 7). These predictions are also better than the ones
from Fernández and Vega (2016) at 80–500m2 scale and Larsen and
MacDonald (2007) at 1600m2 scale without any mitigation measure
(Table 7). When MMF is compared, runoff predictions worsened when
compared to the study of Vieira et al. (2014) at 16m2 scale, but are still
satisfactory (< 0.6). In what concerns soil losses, MMF predictions are
better than the ones obtained by Fernández et al. (2010), and in
agreement with the ones obtained in Vieira et al. (2014), for post-fire
soil losses with and without rehabilitation measures (Table 7). It was
only possible to compare the prediction efficiency from PESERA model
with the study from Fernández and Vega (2016), and in this study, the
PESERA model predictions revealed to be more accurate for both cali-
bration and validation (Table 7).

4.2. Sources of uncertainty

Predicting errors are usually attributed to errors in the model, input
data, and data used for model validation (Nearing et al., 1999). In this
study, one important source of error might come from the fact that the
RUSLE and MMF models have a strong empirical base and were de-
veloped from slope scale data, and validated by the developers using
mostly smaller scale erosion plot data derived from agricultural fields
(Morgan, 2001; Renard et al., 1997). On the other hand, although PE-
SERA might have been developed to predict soil losses over Europe and
for the wide range of the European land uses, soils and climate varia-
bility (Kirkby et al., 2004), several disadvantages were found con-
cerning the non-uniform data collection for calibration and validation
from different countries (Kirkby et al., 2008). Nevertheless, these

Table 5
RUSLE model performance combining several methodologies used to determine R and C factors.

RUSLE Calibration
C factor R factor

Renard et al. (1997) Roose (1975) and Morgan (1995) Panagos et al. (2015)
NSE R2 NSE R2 NSE R2

Renard et al. (1997) − 0.67 0.32 − 0.72 0.91 − 0.71 0.91
Borrelli et al. (2016) − 7.29 0.75 0.60 0.75 0.63 0.75

MMF Calibration
C factor NSE R2

Renard et al. (1997) 0.97 0.98
Borrelli et al. (2016) − 2056.86 0.95

Table 6
Performance indicators of the RUSLE, MMF and PESERA models in predicting
post-fire annual runoff and sediment losses, during the calibration and valida-
tion phase. Nash-Sutcliffe efficiency coefficient - NSE, coefficient of determi-
nation - R2, Root mean square error – RMSE, percent of bias - PBIAS, Spearman's
rank correlation - rho.

Calibration Validation

RUSLE MMF PESERA RUSLE MMF PESERA

Runoff
NSE – 0.69 0.63 – – –
R2 – 0.79 0.77 – – –
PBIAS (%) – − 0.7 − 7.3 – – –
RMSE (mm) – 118 130 – – –
rho 0.84*** 0.76** – – –
Sediment Losses
NSE 0.63 0.97 0.85 0.70 0.77 0.73
R2 0.75 0.98 0.88 0.89 0.79 0.77
PBIAS (%) − 11.7 5.2 − 3.5 − 20.1 1.9 2.6
RMSE (Mg ha−1) 1.06 0.30 0.70 1.62 1.43 1.53
rho 0.80** 0.80** 0.62* 1.00** 0.94* 1.00**

Significance levels: .
* = p-value< 0.05.
** = p-value< 0.01.
*** = p-value< 0.001.
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models (alone or combined) already have been used to estimate soil
losses in recently burned areas (Fernández et al., 2010; 2016;
Karamesouti et al., 2016; Larsen and MacDonald, 2007; Vieira et al.,
2014), leading to different model efficiency results.

4.2.1. Measurement errors
The uncertainties that are associated with field and lab measure-

ments, such as rainfall, and sediment losses are often highlighted as the

most important potential sources of measurement errors (Pietraszek,
2006; Larsen and MacDonald, 2007). The rainfall amounts used in this
study can be considered as accurate, since a good agreement was found
between the tipping-bucket gauges and the rainfall data from the
nearest long-term climate station (GÓIS (13I/01 G), SNIRH, 2012). The
same is true on the accuracy of ground cover measurements, because
they were always carried out by the same observer in a systematic way,
thereby reducing possible errors.

Fig. 3. Measured vs. predicted post-fire annual runoff and sediment losses in the calibration and validation phase of the RUSLE (only erosion), MMF and PESERA
models.
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As regards sediment losses, the 1- to 2-weekly monitoring intervals
(40 read outs), together with the high capacity of runoff collection
tanks, provided an overview of the hydrological response of each plot.
Therefore, it seems reasonable to suggest that the runoff and erosion
measurements were accurate, within the limitations of a plot-based set-
up (e.g. Boix-Fayos et al., 2006).

4.2.2. Modelling errors
All the applied models required adaptations to the specific post-fire

conditions of the studied sites, especially for primary effects such as
fire-induced changes in the soil and surface cover. The inclusion of
these changes in the model inputs led to some limitations, which might
have been only partially solved by the calibration approach followed in
this study.

The use of rainfall erosivity values from European maps (Panagos
et al., 2015), could limit the potential to refine the calibration of these
models under different rainfall regimes in a long-term study case. A
more direct conversion from rainfall amounts into rainfall erosivity is
still required for this region (e.g. Roose, 1975 and Morgan, 1995), al-
though the use of the long-term mean rainfall erosivity derived from
Panagos et al. (2015) might be enough for a 1-year study like this one,
in which more importance is given to the risk comparison between
affected nearby areas.

According to several researchers, the K factor should be increased to
accommodate post-fire conditions, justified by the usual decrease in soil
aggregate stability and the increase in soil water repellency after fire
(Larsen and MacDonald, 2007; Miller et al., 2003; Terranova et al.,
2009). Fernández and Vega (2016) however, ignored these changes
because they would worsen the model performance by overestimating
even more the RUSLE predictions. In this study however, the soil
erodibility factor (K) was calculated according to the Renard et al.
(1997) methodology. Justified by Moody et al. (2013) as “a good first
approximation”, since this author showed that this parameter needs
further research regarding post-fire conditions.

Because of the equilibrium of each formulation (RUSLE and MMF),
two different C factors were used, the Borrelli et al. (2016) version in
the RUSLE model that considers a generalised impact of wildfires but
without taking into account burn severity, and the Renard et al. (1997)
version in the MMF model as described by Vieira et al. (2014). When
using RUSLE to simulate post-fire conditions for different burn seve-
rities, a C factor with the same magnitude of the Borrelli et al. (2016)
values together with the Renard et al. (1997) adaptation that take into
account burn severity, is still needed.

In the case of PESERA, the soil parameters were chosen according to
the texture class, not considering post-fire changes, as it was done in
other studies (Fernández and Vega, 2016). In this work, as the burn
severity was moderate in all study sites this is not problematic, but this
should be taken into consideration in other modelling exercises with
various burn severities. The hydrologic and - by consequence - the
erosive response among the treated and untreated plots, was calibrated
through the gradient and the runoff threshold input, which led to a site-
specific calibration and therefore might not mean its applicable else-
where.

It was possible to verify that mulch treatments efficiency can be
successfully predicted by using the presented methodologies.
Nevertheless, some variations might arise from the chosen organic
material for rehabilitation treatment, and if other techniques are used
(Fernández et al., 2010), since the efficiency of the ones calibrated in
this study are highly dependent on ground cover.

The fact that this study was done at an annual scale, limited the
implementation of several seasonal variables, such as the soil water
repellency and soil moisture, and the drastic increase in ground cover
that typically occurs during the first years after the wildfire dis-
turbance. Nevertheless, the use of mean ground cover values and soil
moisture at field capacity as well as the non-inclusion of soil water
repellency, still allowed good model results at an annual scale.

Finally, the reduced sample size of the validation data, and the lack
of runoff results at a greater spatial scale (SF-B and SF-Hm), partially
limited the evaluation of model efficiency. However, the double cali-
bration (runoff and erosion) was an advantage for MMF and PESERA
models since it improved soil losses predictions among the calibration
and validation datasets.

4.3. Differences between models

As stated earlier, although the RUSLE, MMF and PESERA models
have great differences in their formulation, they seem to accommodate
quite well the main changes in post-fire and post-fire mitigation con-
ditions at the annual scale. It should be highlighted, however, that the
potential of these models for making accurate estimations at smaller
time scales (monthly and seasonally) decreases from the physically
based model to the empirical one. Therefore, the adequacy of these
models depends on the objective of their implementation (i.e. post-fire
management or post-fire process studies) and on the limits established
for their performance.

The lack of runoff prediction within the RUSLE formulation seems
to be the reason why this model performs worse in comparison to the
MMF and PESERA models. Another limitation of the RUSLE model is its
great dependence on empirical parameters like C and P, which have the
same weight as the other input parameters when estimating soil losses.
In the case of MMF and the PESERA model, runoff generation is cal-
culated based on physical processes, and only after, soil losses are es-
timated based on the transport capacity of the estimated overland flow.
MMF makes use of its empirical base by including the C and P factors in
these soil loss estimations, while the PESERA model calculates the ca-
pacity for sediment transport based on texture and ground cover.

In past studies, RUSLE and MMF already have been successfully
calibrated and validated at wider scales (16–500m2) with field data
(Table 6). The new challenge of this study, which consists in calibrating
all these models at micro-plots (0.5 m2) followed by an upscaling
(10m2), could be considered successful. Since models performed rea-
sonably well at greater spatial scales as observed by the validation re-
sults. For the MMF model however, this was only possible after in-
cluding the scale component (Eq. (3)) in the runoff estimations, as done
by Morgan and Duzant (2008).

4.4. Data and parameter availability for post-fire model application

The application of each model for burnt areas also depends on the
availability of baseline data and parameter estimations. Many of these
parameters can be easily obtained from pan-European datasets, as de-
scribed below:

• topographic variables can be obtained from the EU-DEM (García
et al., 2015), using different methodologies (e.g. Zhang et al., 2013);

• meteorological data can be obtained at the daily scale from the
gridded E-OBS (Haylock et al., 2008).

• topographic and meteorological parameters for RUSLE (LS and R)
are already mapped for Europe (Panagos et al., 2015);

• pre-fire vegetation cover is available from the CORINE Land Cover
2012 (Büttner, 2014);

• burn scar and severity maps are routinely provided by the EFFIS
service (e.g. Sedano et al., 2013).

Estimations of cover values (C factor) for burnt areas should be
determined for each fire. Although this and previous works provide
several indicative values (Fernández et al., 2010; Vieira et al., 2014),
more research is needed to derive them for different burn severities
given their importance for post-fire erosion (Fernández et al., 2010;
Fernández and Vega, 2016; Larsen and MacDonald, 2007; Vieira et al.,
2015), or risk attenuation due to the system's response (e.g. natural
needle mulch). Vegetation cover for MMF and PESERA models can be
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estimated from vegetation cover indices (Huete et al., 1999), as shown
by Van Eck et al. (2016), however it is difficult to separate between
canopy and ground cover using satellite imagery. This is also a problem
when estimating the P factor for the RUSLE and MMF models, as this is
calculated from ground cover.

Soil parameters are available from the SoilGrids database (Tóth
et al., 2017). However, the parameters on this database do not fully
match the ones required by MMF and PESERA, so robust relationships
should be established, such as the one followed by Tavares Wahren
et al. (2016) using neural networks, to improve model performance in a
Mediterranean forest. For RUSLE, the soil erodibility factor (K) has been
mapped for Europe by Panagos et al. (2014) and even considers a
correction for soil stone content; however, these values should still be
adjusted for post-fire conditions as described earlier.

Given the multiplicity of possible model parameterizations, the use
of these models for operational purposes in Mediterranean Europe still
requires some work. This study shows that micro-plot experiments can
be used to calibrate models in areas dominated by inter-rill erosion,
which seems to be the case in most burned areas in the Mediterranean
(Shakesby, 2011). Given the large amount of published micro-plot data
and the easiness of replicating these experiments, micro-plots can
provide rough estimates on model parameters with higher uncertainty.

4.5. Model selection for burned areas

The models used in this work are quite different; RUSLE is a simple
empirical model, while both MMF and PESERA are process-based
models, and therefore more complex than the former given its monthly
time-step. The selection of an appropriate model depends on a variety
of factors, as discussed by Beven (2012):

• Data availability - all the models have been parameterized and
tested for burned areas in the Iberian Peninsula. PESERA and
especially MMF have been applied more often and are possibly more
robust. On the other hand, RUSLE is easier to apply since most
parameters are readily available.

• Prediction ability - this work has shown that all models can sa-
tisfactory simulate post-fire erosion, and the effects of mulching.

• Model limitations - the biggest limitation of RUSLE is that it can only
predict soil erosion for small landscape units. In contrast, the
PESERA and MMF models are capable of simulating both runoff and
erosion, and with some modifications route water and sediment
along the catchments.

When strictly considering the objective of this work, i.e. identifying
the best model for designing erosion mitigation and rehabilitation
measures, the RUSLE model would appear as an interesting solution for
non-modellers, since it is easier to apply, it has a number of readily
available parameters, and provides satisfactory results. Care should,
however, be taken when conducting parameterization and validation
exercises with inputs that have been used in other locations, due to
climate and soil variability. The MMF and PESERA models are also
valuable tools since they can be used as components to route water and
sediments to streams, making them particularly useful if included in a
tool for assessing the risk of water contamination after fire, a recurrent
concern for water managers in burnt areas due to the increase in sus-
pended sediments (Smith et al., 2011). Moreover, their process-based
nature allows them to easily handle situations outside their calibration
range, making them particularly suitable for research purposes and
scenario analysis (Beven, 2012).

That being said, it is not necessarily true that land managers need to
select a single model for a specific area. The usefulness of a versatile
suite of simple and complex models has been demonstrated for the
management of coastal ecosystems (Nunes et al., 2011), and the same
approach can be applied for burned areas. As an example, RUSLE can be
used for fast and simple hillslope applications (e.g. prioritization of

areas-at-risk), while MMF or PESERA can be selected to assess the links
between forest ecosystems and the stream network in a GIS environ-
ment, for testing different management scenarios (e.g. rehabilitation
measures, plowing), similarly to what SWAT model does (Arnold et al.,
1998).

5. Conclusions

In this study, three erosion models with different levels of com-
plexity (empirical, semi-empirical and physically-based), were used to
predict the hydrological and erosive response in burned forest areas,
following a moderate severity fire in North-Central Portugal. The ef-
fectiveness of different mulching techniques (hydromulch vs. natural
pine needle mulch) in reducing post-fire runoff and soil erosion in fire-
affected areas was evaluated using the RUSLE, MMF and PESERA
models by comparison to untreated conditions, and the following
conclusions can be retrieved:

1. All the models were reasonably able to predict the hydrological and
erosive response in burned areas (NSE> 0.6), although MMF and
PESERA provide a hydrological parameterization that seem to
benefit soil erosion estimations (NSE>0.8 for calibration, and
NSE>0.7 for validation).

2. Results also showed that all these models can be calibrated at a
small spatial scale (0.5 m2) but provide accurate results at greater
spatial scales (10m2).

3. From this work, the RUSLE model seems to be efficient for fast and
simple applications due to its simplicity and reduced data require-
ments (e.g. risk areas prioritization).

4. MMF or and PESERA models would be valuable as a base of a tool
for assessing the risk of water contamination in fire-affected aquatic
ecosystems as well as for testing different land use management
scenarios.

5. The results in this study provide indicative values for model appli-
cation in burned areas, however are limited to a moderate burn
severity wildfire, Therefore, care should be taken when applying the
inputs in other conditions.

6. More work is needed to derive parameters for different burn seve-
rities, and different post-fire mitigation measures given their im-
portance for post-fire erosion.
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